CONCEPT PRESENTATION

DECO2200 - ASSESSMENT 2 Cyrilla Lowas 490517105 Luisa Hadinata 490457867 Valencia Yun 490522970

Problem with Space Travels: Mid-Flight

- 2+ hours of exercise in space
- Crucial health risk due to microgravity environment: **muscle and bone health**
- Microgravity: significant decrease of muscle and bone exercises
- Some of the diseases that can occur :
 - Atrophy (muscle loss)
 - Bone weakening
 - o Osteoporosis

(How astronauts exercise in microgravity, 2020)

Current Problems with Fitness in Space

The workout machines used in space are ARED, CEVIS, and COLBERT. All of these exercise machines use a harness to apply pressure.

Problems that astronauts have experienced

- Karen Nyberg mentioned how running on the space treadmill machine isn't as good as running on earth.
- When using the machines, astronauts can't move around freely since they are strapped down in a harness. This makes it difficult to reach out to the screen in order to navigate through the interface.

(Train Like an Astronaut -- ARED, 2020)

(How do Astronauts Exercise in Zero Gravity?, 2020)

Current Problems with Existing Technologies for Fitness

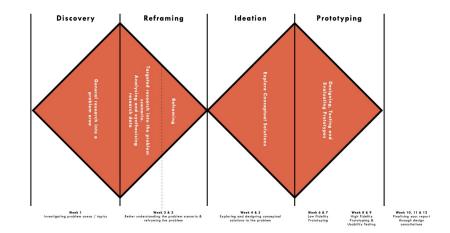
- Existing fitness apps lack in creating progressively improving workout results
- Workout devices that have separate control units make it cumbersome to use
- Fitness games can easily become boring

(Nike Training Club App, 2020)

(Garmin Game App, 2020)

Fitness in Space

- Karen Nyberg mentioned how running on the space treadmill machine isn't as good as running on earth.
 - Make the experience of working out in space feel more than just another routine of the day
- When using the machines, astronauts are strapped with a harness to apply pressure and prevent themselves from floating around.
- Astronauts have to reach out to the screen in order to navigate through the interface.
 - Allow the user to navigate through the screen without having to unstrap themselves from the harness


Existing Fitness Technologies

- Existing fitness apps lack in creating progressively improving workout results
 - Update the user with the latest workout to make their workout challenging
- Workout devices that have separate control units make it cumbersome to use
 - Design a device that makes screen navigation more convenient considering the limitation in mobility in microgravity
- Fitness games can easily become boring
 - Create an interface that is highly interactive with the user's workout performance in real-time
 - Lead the user to focus on their health rather than the game itself

Design Process

To find the right solution for the problems we discovered, we use the double diamond diagram introduced in the lecture to guide us through our design process ("Week 4 - Ideation – Exploring Opportunities", 2020).

- Discovery
 - Research (done in A1)
- Reframing
 - Synthesize research into data
- Ideation
 - Explore conceptual solutions
- Prototyping
 - Design solutions
 - Test solutions
 - Evaluate solutions

("Week 4 - Ideation - Exploring Opportunities", 2020)

CONCEPTS

Virtual Reality Exercise Device

Problem:

- Lower satisfaction of exercise experience compared to the traditional way of exercising on earth
- The struggle to adjust pressure loads manually.

Solution:

- Create a virtual environment for the user—one that is similar to earth
- A exoskeleton suit that supplies resistance against leg movement

SMART Goal Holographic Screen

Problem:

- Difficulty with adapting to working out in microgravity
- Number of machines may be limited

Solution:

- Creating a system that provides users with the right level of challenge according to their current capabilities
- Incorporate an element of competitiveness to keep users motivated

Virtual Pet Raising Game

Problem:

- Unattainable workout goal for non-fitness people
- Games that can get boring

Solution:

- Keep users mindful of their health status rather than trying to reach a goal
- Ludic game that has no end goal but encourage exploration and discovery of their muscle and bone health

Concept 1

Virtual Reality Exercise Device

WORKS WITH EXOSKELETON MACHINE

(Netflix Show Black Mirror Pushes Boundaries Of Virtual Reality, 2019)

FULLY ARTIFICIAL ENVIRONMENT

(NASA's Ironman-Like Exoskeleton Could Give Astronauts, Paraplegics Improved Mobility and Strength, 2013)

REAL-TIME HAND TRACKING

Concept 1

Virtual Reality Exercise Device

- VR head-mounted display that is used in combination with an exoskeleton machine
- The device would be used when the user is exercising on a treadmill/ on a bike
- Cardio-based exercise
- The exoskeleton machine works by **supplying resistance** against the leg movement

Why Virtual Reality?

- VR is a great tool to simulate an artificial environment according to the user's needs
- It also helps to keep the user **motivated** as it makes the exercise more **engaging** (capturing the user's attention through 360 view)

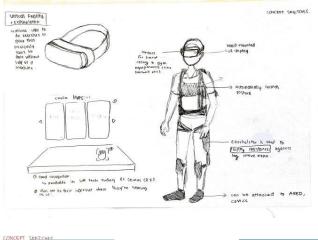
How the user would interact

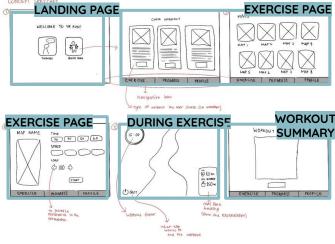
Hand recognition technology / hand tracking

(Oculus Quest Hand Tracking Is HERE, 2020)

(Oculus Quest Hand Tracking VR, 2020)

Concept Sketches

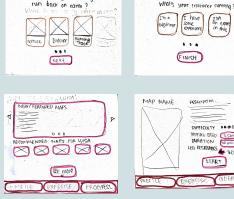

Features


The features the VR interface would include:

- Map recommendations based on the user's preference
- Automatically increase resistance in the exoskeleton suit
- See daily and weekly progress
- Real-time health monitoring during exercise (i.e. heart rate, calories burned, etc)

This device is aimed to solve these problems:

- Lower satisfaction of exercise experience compared to the traditional way of exercising on earth
- The struggle of adjusting pressure loads manually

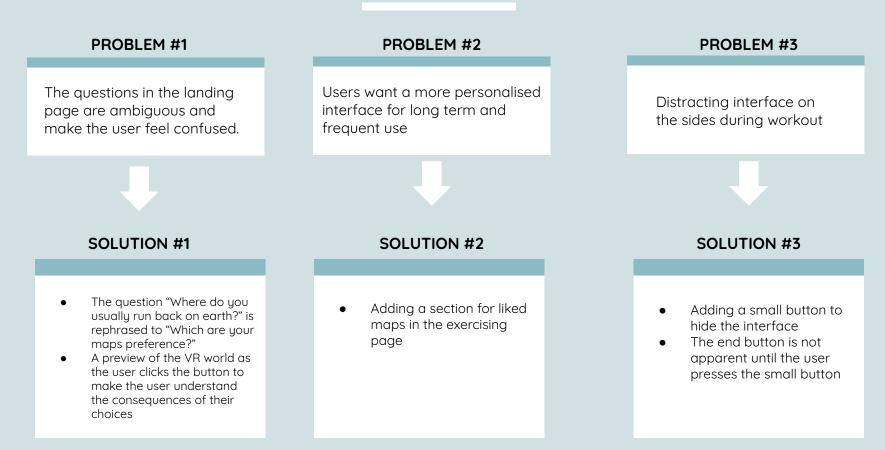


User Testing

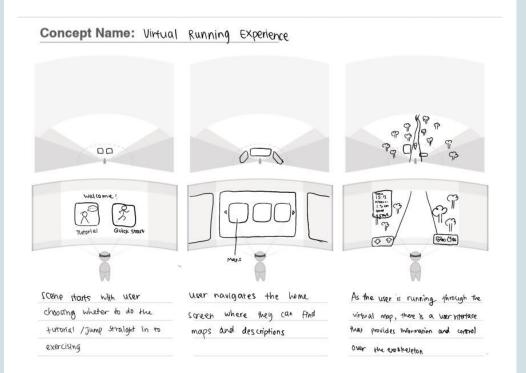
Landing page (when user first interact with the VR)

Interface durina the exercise

where do you usually

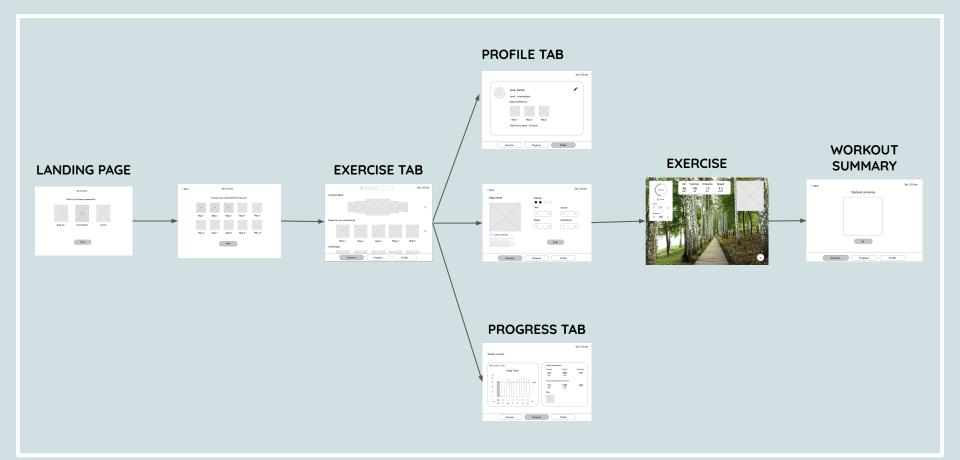


Tell US Almust done !


Main insights :

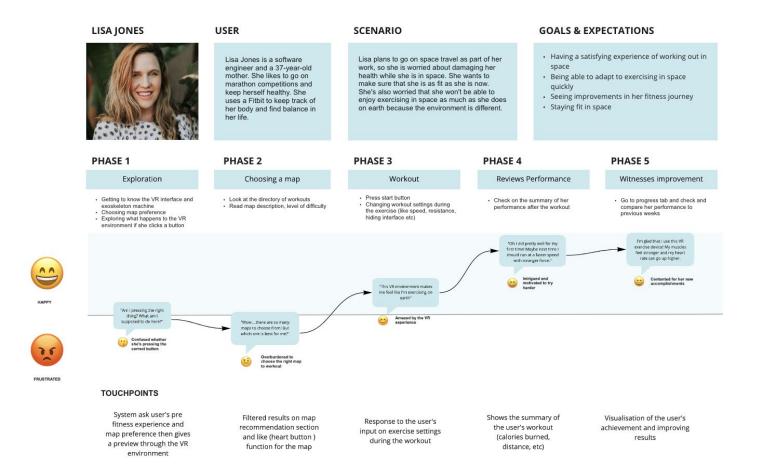
- Most users are **not** confused with the • interface. They quickly noticed where elements are located.
- In the exercise section where the maps • are shown, they found the recommended maps to be helpful in figuring out which map to use when they first start using the device.
- However, for a long term and frequent • use, they wanted something more personalised such as a "liked maps" section to easily access their most often used map.
- During the exercise, the user felt like ۲ the interface on the sides was too big and distracting.

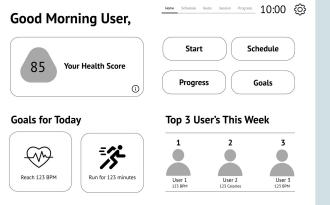
REDESIGN


WIREFRAMING VIRTUAL REALITY

Some of the things we need to specify are:

- 1. **Scene** Once the user puts on the headset, what do they see?
- 2. **Spatial** What is the space like? How does it mimic the real world?
- 3. **Affordances** What can the user do? Can they navigate? If yes, where? What items are clickable?


WIREFLOW

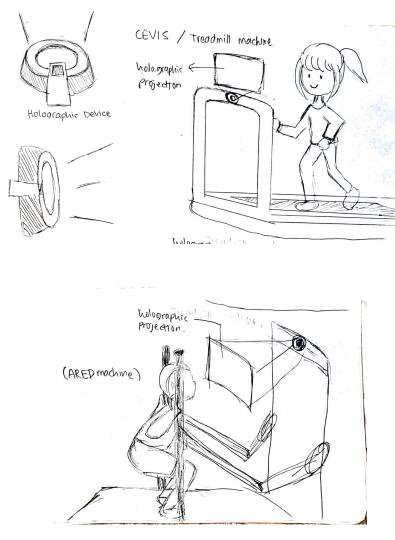

LOW FIDELITY INTERACTIVE PROTOTYPE

USER JOURNEY MAPPING

Concept 2 SMART Goal Holographic Screen

TIME EFFICIENT DEVICE

r Goals		Home S	chedule -	Goals	Session	Progress	10:00	¢
tal goal prog	ression					20)%	
-								
	Goals for this week			U	·)			
	Reach a BPM of 123		2	20%				
	Reach run for 123 mir	utes	2	20%				
	Reach burn 123 calori	es						


You

WORK OUT WITH YOUR PERSONAL COACH

Concept 2

Smart GOAL Holographic Screen

- Find a workout that is effective in an unfamiliar microgravity environment
- Providing users with the right level of challenge relative to their current strength capability
- Every user has their reserved work out session. The machine will be ready for their use— no log in or setting up required
- Ranked system to motivate users to push their limits
- Voice user interface to easily navigate through the screen

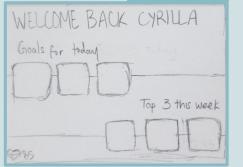
Concept 2

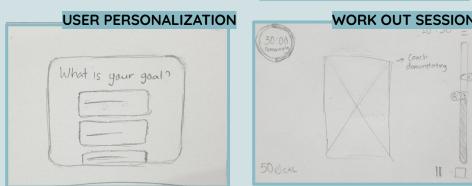
Why on Hologram?

- Doesn't take up much space, considering that space in a spacecraft can be quite limited
- Display is flexible to the user's preferences (position of the screen)
- Can adapt to where the user is facing since there is no risk of compromising space. Additionally, users don't have to reach out all the time for adjustments.

How the users would interact

- Voice recognition
- A sensor on the device that detects your hand movement and gestures.
- Adapts to users orientation, screen shows up in the area in which user is facing




(Businessman Using Hologram Screen With Digital Data Wall Mural | Wallpaper Murals-sdecoret, 2020)

(Wu, 2011)

Concept Sketches HOME SCREEN

USER PERSONALIZATION

DAV 3

Jam - 10am

DAYA

Sam-

gam-

Dam

11.0

Choose Your Timetable ARED

DAY 2

Barn-Sun Sam-Jum San- Jam

10 am - 11 am 11) am - 11an 10 am - 11 am

DAY 1

2 am - 10 am 9

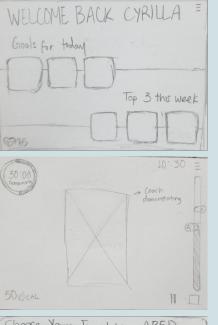
PLAN & GOAL SETUP Today's Workout Plan Suggested Add - One

Features

The features of this device would include :

- User personalisation ٠
- Customisation of user goals according to their personal wants and needs
- Include voice user interface and touch user • interface
- A coach on the holographic screen during ٠ workout session

This device is aimed towards:


- Adapting new travellers to stay fit in space ٠
- Reduce the time it takes for users to set up their workout environment and start exercising
- Emphasising the importance of achieving ٠ user's fitness goal during their space journey

User Testing

Home page

Session page

Scheduling page

Choose Your Timetable: ARED DAY 1. DAY 2 DAY 3 DAYA Bom - Joan San - Jam San -Jom - Joan Jam - Man Jam - Joan San -100m - Ilam IDam - Ilan 100m - Ilam 10am Main insights :

- Home page needs to be simpler so that users can **easily navigate**.
- Stop and pause symbols on the sessions page need to be **clearer**.
- Scheduling process need to show dates and whether it has been reserved or not.
- Users want to be able to add their **personal goals.**
- Progress page needs to be simplified.

REDESIGN

PROBLEM #2

SOLUTION

- Added buttons to the right hand side

- Dates are added on top of each time.

PROBLEM #3

SOLUTION

- Symbols changed to button with words.

WIREFLOW

ONBOARDING

Let's you get started.			
What is	your goal?		
	Annal works some		
	fanat weat name	f.	
	feasi sent ann	-1	

10:00 🔞

RESERVATION

SCHEDULE

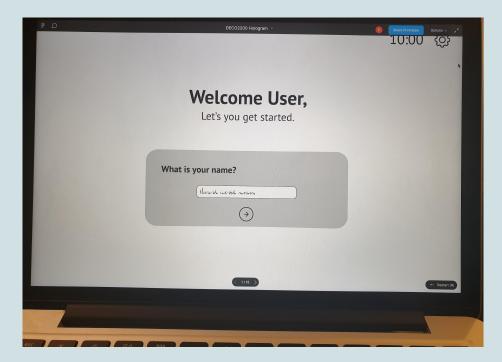
GOAL Your Goals

Cool progression 20%

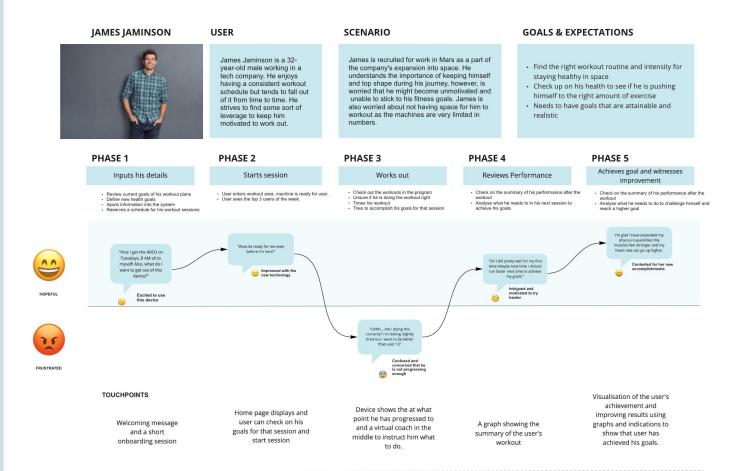
Reach burn 123 calories

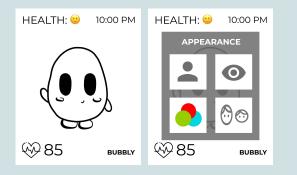
---- ---- 10:00 @

PROGRESS

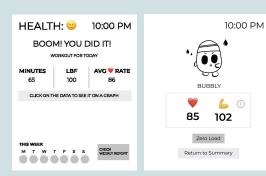

RESERVATION

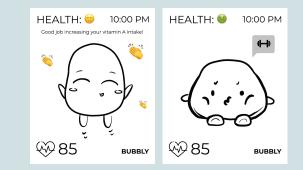
ARED		FEBRUARY 4-10					Э	
MON	TUE	WED N2	THU	FRI	SAT	SUN 201		
6 AM	6 AM	6 AM	6.AM	6 AM	6 AM	6 AM		
7 AM	7.AM	7.AM	7.4M	7.AM	7 AM	7.AM		
8 AM	8 AM	8 AM	8 AM	8 AM	8 AM	8 AM		
9 AM	9 AM	9 AM	9.AM	9.AM	9 AM	9 AM		
10 AM	10 AM	10 AM	[10 AM]	10 AM	10 AM	10 AM		
				(


VOICE USER INTERFACE


LOW FIDELITY INTERACTIVE PROTOTYPE

USER JOURNEY MAPPING




Concept 3 Virtual Pet Raising Game

REAL-TIME WORKOUT DATA

CUSTOMISABLE CHARACTERS

RESPONSIVE DESIGN

Concept 3

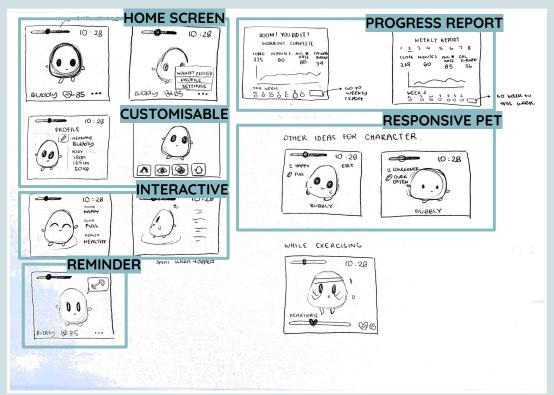
Virtual Pet Game on an Apple Watch

- User's muscle and bone health = pet's health
- Lock screen for easy access
- A remote control for the workout devices (i.e. CEVIS, ARED, and COLBERT)

Why an Apple Watch?

- Real-time growth (monitor 24/7)
- Avoid struggling to grab or walk to a device in a microgravity environment
- Allows connection to existing fitness apps
- Workout screen can be navigated easily during workouts

(Apple watch series 6, 2020)

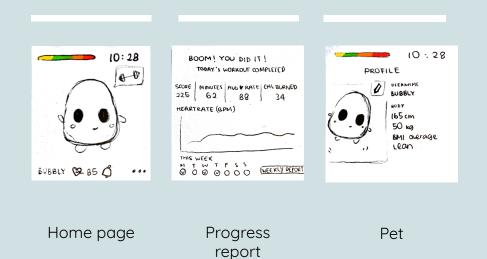


(Apple Watch Series SE, 2020)

(Tamagotchi, 2020)

Concept Sketches

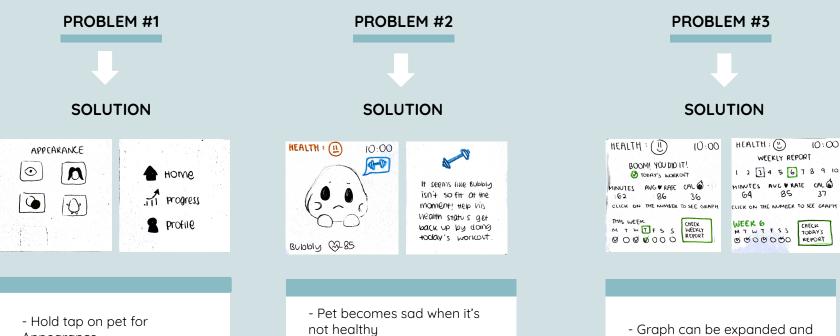
Features


The features of the app would include :

- Customisable character design
- Progress report of the user's workout performance
- Responsiveness to the pet's health status (i.e. reminders, change in pet's body shape)

Health Status

- Muscle and bone health
 - Atrophy
 - Osteoporosis
- Food intake and exercise


User Testing

Main insights :

- Enable appearance change directly on the character. There are too many steps to get to the Appearance page.
- To provide valuable information, the data on the graph should be based on what the user wants to see instead of showing just the heart rate.
- Make the **pet more expressive** and allow the user to interact with it. It should express a feeling of sadness when it's not healthy.

REDESIGN

Appearance

- Hold tap on any empty space for Menu

- Speech bubble is a button that leads to Help and Documentation

- Graph can be expanded and collapsed when the user taps on the data

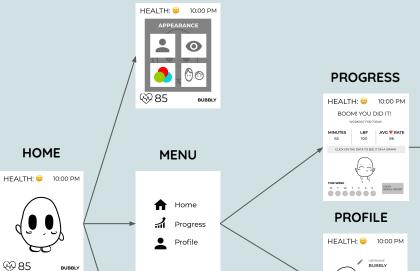
10:00

37

REFRAMING: RE-EMPHASISING MUSCLES AND BONES

Calories Burned to LBF (Pound-mass)

- LBF is pound-force, a measurement used for force
- Goal is to gain muscle mass, not burn calories


Visualisation of Muscle and Bone Condition

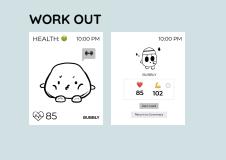
• Emphasise the changes of the muscle and bone condition of the user

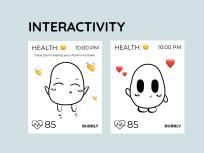
WIREFLOW

APPEARANCE

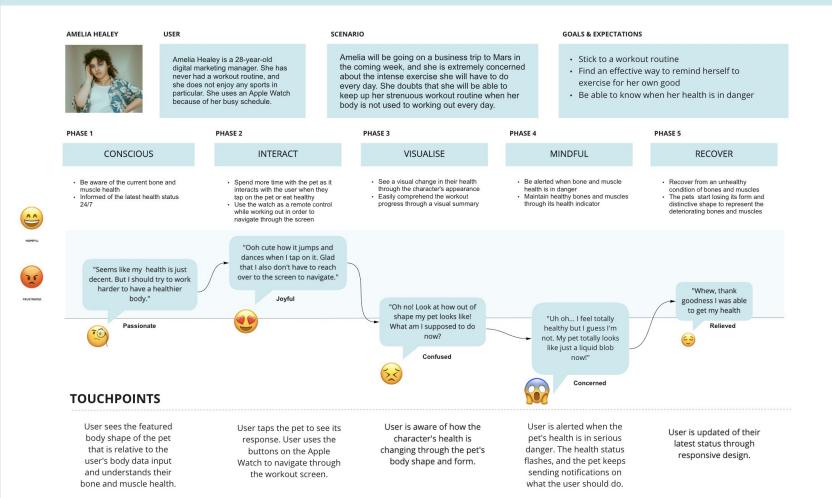
HELP & DOCUMENTATION

BUBBLY


HEALTH STATUS

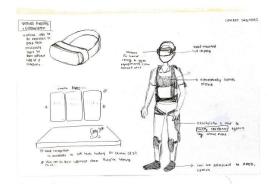

Current health: Cood 🙂

How It works: Your health status represents your health status of your bone and muscle health. This is calculated by...



USER JOURNEY MAPPING

Narrowing Solutions


Narrowing Solution

For our next design process, we have decided to further develop our ideas on concept 1 - Virtual Reality Exercise Device

Why?

More versatile

- Integrated into daily activities of users
- Join workout sessions with people not on spacecraft
- A fun and interactive virtual reality experience is a better incentive for users rather than a rational workout plan. A virtual pet raising game can be easily disregarded since it's a separate device from the workout devices.
- The VR is directly implemented into the workout sessions, reducing the additional step for users to use another system (SMART Goal Holographic Screen) or an app (Virtual Pet Raising Game).

References

Apple watch series 6. (2020). [Image]. Retrieved from https://www.cnbc.com/2020/09/25/apple-watch-series-6-review-the-best-smartwatch-minor-update.html

Apple Watch Series SE. (2020). [Image]. Retrieved from https://www.engadget.com/apple-watch-se-review-watchos-7-price-specs-comparison-172542713.html

Blain, L. (2020). Oculus Quest can now give you beautifully tracked virtual hands in VR. Retrieved 2 October 2020, from https://newatlas.com/vr/oculus-quest-hand-tracking-vr/

Cycling on the International Space Station With Astronaut Doug Wheelock. (2020). [Video]. Retrieved from <u>https://www.youtube.com/watch?v=bG3hG3iB5S4</u>

Fitness Mirror. (2020). [Image]. Retrieved from https://throomers.com/mirror-the-nearly-invisible-interactive-home-gym/

Garmin Game App. (2020). [Image]. Retrieved from https://buy.garmin.com/en-AU/AU/p/607993

Hall, L. (2013). Exoskeleton Could Give Improved Mobility and Strength. Retrieved 2 October 2020, from https://www.nasa.gov/offices/oct/home/feature_exoskeleton.html

How astronauts exercise in microgravity. (2020). [Video]. Retrieved from https://www.youtube.com/watch?v=qd4_BqG9aYI

How do Astronauts Exercise in Zero Gravity?. (2020). [Video]. Retrieved from https://www.youtube.com/watch?v=ZoZkvUHBI-w

References

Jang, E. (2019). Hand gesture recognition technology brings real hand into virtual reality. Retrieved 1 October 2020, from https://medium.com/@Chenaccc/hand-gesture-recognition-technology-brings-real-hand-into-virtual-reality-7b193d3a7173

NASA's Ironman-Like Exoskeleton Could Give Astronauts, Paraplegics Improved Mobility and Strength. (2013). [Image]. Retrieved from https://www.nasa.gov/offices/oct/home/feature_exoskeleton.html

Netflix Show Black Mirror Pushes Boundaries Of Virtual Reality. (2019). [Image]. Retrieved from https://www.forbes.com/sites/sap/2019/09/17/netflix-show-black-mirror-pushes-boundaries-of-virtual-reality/#60dd6a5a459c

Nike Training Club App. (2020). [Image]. Retrieved from https://blog.subduethesloth.com/2018/11/30/nike-run-club-lost-my-data/

Oculus Quest Hand Tracking Is HERE. (2020). [Image]. Retrieved from https://www.youtube.com/watch?v=mNZSv-9GgVY

Oculus Quest Hand Tracking VR. (2020). [Image]. Retrieved from https://newatlas.com/vr/oculus-quest-hand-tracking-vr/

Tamagotchi. (2020). [Image]. Retrieved from https://www.amazon.com/Tamagotchi-42867-Original-Sahara/dp/B0829QZWXH

Train Like an Astronaut -- ARED. (2020). [Video]. Retrieved from https://www.youtube.com/watch?v=7oBvNxbTF28

Week 4 - Ideation - Exploring Opportunities. (2020). Lecture, Week 4 Modules.

Wallsheaven.com. 2020. Businessman Using Hologram Screen With Digital Data Wall Mural | Wallpaper Murals-Sdecoret. [online] Available at: https://wallsheaven.com/wall-murals/businessman-using-hologram-screen-with-digital-data-A168963321> [Accessed 1 October 2020].

Wu, J., 2011. *Holographic Computer Touch Screen*. [online] Available at: <https://www.youtube.com/watch?v=YZCIsgOaUaA> [Accessed 3 October 2020].